Indian Statistical Institute, Bangalore

M. Math.I Year, First Semester Mid-Sem Examination Analysis of Several Variables September 11, 2009

Time: 3 hours

Instructor: B.Bagchi

Maximum Marks 100

1. (a) Define the Cantor set $C \subseteq [0, 1]$, and show that $C \times C$ is homeomorphic to C. Conclude that C^k is homeomorphic to C for all $k \geq 2$.

(b) Show that there is a continuous map from C onto [0, 1].

(c) Show that every continuous map from C into [0,1] extends to a continuous map from [0,1] into itself.

(d) Use the previous parts to show that there is a continuous map from [0, 1] onto $[0, 1]^k$. [8+4+4+4=20]

- 2. Let $\mathbb{X} \subseteq \mathbb{R}^d$. Show that every open cover of X has a countable subcover. [20]
- 3. (a) Define the total derivative of $f: \Omega \longrightarrow \mathbb{R}^e(\Omega \text{ an open subset of } \mathbb{R}^d)$ at a point $x \in \Omega$. Show that, if the total derivative f'(x) exists, then all the *d* partial derivatives of *f* exist at *x*, and find an expression for f'(x)in terms of these partial derivatives.

(b) If f_1, f_2, \dots, f_d are d differentiable functions $\mathbb{R} \longrightarrow \mathbb{R}$ then show that the function $f : \mathbb{R}^d \longrightarrow \mathbb{R}$ defined by $f(x) = f_1(x_1) + \dots + f_d(x_d)$ is differentiable everywhere, and the derivative is given by f'(x)v = $\sum_{i=1}^d v_i f'_i(x_i), v \in \mathbb{R}^d$. [10+10=20]

4. (a) Let $\Omega \subseteq \mathbb{R}^d$ be open, $f : \mathbb{R}^d \longrightarrow \mathbb{R}^e$. If, for some $i, j(1 \le i \ne j \le d^1)$ the partial derivative $\partial_i \partial_j f$ and $\partial_j \partial_j f$ exist and are continuous on Ω then show that they are equal.

(b) Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by $f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Then show that $\partial_1 \partial_2 f$ and $\partial_2 \partial_1 f$ exist throughout \mathbb{R}^2 , but they are not equal everywhere. [10+10=20]

5. Let Ω be a convex open subset of ℝ^d and f : Ω → ℝ^e be differentiable everywhere. Suppose all the partial derivatives of f are bounded on Ω.
(a) Show that there is a constant m such that ||f'(x)|| ≤ m for all x ∈ Ω.

(b) Conclude that there is a constant c such that $||f(x) - f(y)|| \le c||x - y||$ for all $x, y \in \Omega$. [10+10=20]